THE LIFE CYCLES OF STARS

MAIN SEQUENCE

Composition is > 98% hydrogen and helium. 1/3 of the hydrogen is converted to helium.

- M 10−150 solar masses
- (90% of lifespan
- → Spica, Theta Orionis C

GIANT/SUPERGIANT

Massive stars are capable of producing heavier elements, like iron, through fusion.

- significant loss of mass
- (1) 10% of lifespan
- → Betelgeuse, Rigel

SUPERNOVA

Outer layers of hydrogen and helium are ejected along with some heavier elements.

- All but 10% of the original mass is ejected
- (seconds
- → Cassiopeia A, Kepler's Supernova

BLACK HOLE

A star's core collapses into extremely dense matter. Even light cannot escape the gravitational pull.

- M 3 solar masses or larger
- \bigcirc 10 70 years
- → Cygnus X-1, Sagittarius A

NEUTRON STAR

A star's core collapses into a dense mass of neutrons.

- M 1.4–3 solar masses
- \bigcirc 10³³–10⁴⁵ years
- → Circinus X-1, The Mouse

Gas clouds collapse and matter accumulates on a protostar.

High-mass stars live for one million to tens of millions of years while low-mass stars, like our Sun, live for tens of millions to trillions of years.

MAIN SEQUENCE

Composition is > 98% hydrogen and helium. 1/3 of the hydrogen is converted to helium.

- M .08−10 solar masses
- (90% of lifespan
- → Sun, Altair

RED GIANT

Expending hydrogen in their cores, these stars extend their outer layers and can grow to > 100 times their main sequence size.

- M 99% of original mass
- (1) 10% of lifespan
- → Aldebaran, Arcturus

PLANETARY NEBULA

The outer layers of gas are ejected while the star's core contracts into a white dwarf.

- All but 5-15% of the original mass is ejected
- tens of thousands of years
- → M27, NGC 40

WHITE DWARF

This star core is typically composed of carbon and oxygen. Neon, magnesium, and helium are possible.

- M 5-15% of original mass
- \bigcirc 10¹⁵–10²⁵ years
- → Mira B, Sirius B

Matter expelled from stars can eventually accumulate into new star-forming nebulae.

RETURN TO NEBULAE

BLACK DWARF

A hypothetical remnant of a cooled white dwarf, the Universe's existence is too short to prove its existence.

- M < 1.4 solar masses
- \bigcirc 10³³–10⁴⁵ years